

 Waterfall Model

 V-Shaped Model

 Prototyping

 Incremental Model

 Spiral Model

Waterfall Model
 Requirements – defines needed

information, function, behavior,
performance and interfaces.

 Design – data structures,
software architecture, interface
representations, algorithmic
details.

 Implementation – source code,
database, user documentation,
testing.

Waterfall Model
 Test – check if all code modules

work together and if the system
as a whole behaves as per the
specifications.

 Installation – deployment of
system, user-training.

 Maintenance – bug fixes, added
functionality (an on-going
process).

Waterfall Strengths
 Easy to understand, easy to use

 Provides structure to inexperienced staff

 Milestones are well understood

 Sets requirements stability

 Good for management control (plan, staff, track)

Waterfall Deficiencies
 All requirements must be known upfront

 Deliverables created for each phase are considered
frozen – inhibits flexibility

 Does not reflect problem-solving nature of
software development – iterations of phases

 Integration is one big bang at the end

 Little opportunity for customer to preview the
system (until it may be too late)

When to use the Waterfall Model

 Requirements are very well known

 When it is possible to produce a stable design

 E.g. a new version of an existing product

 E.g. porting an existing product to a new platform.

V-Shaped SDLC Model
 A variant of the Waterfall

that emphasizes the
verification and validation
of the product.

 Testing of the product is
planned in parallel with a
corresponding phase of
development

V-Shaped Steps
 Project and Requirements Planning

– allocate resources

 Product Requirements and
Specification Analysis – complete
specification of the software system

 Architecture or High-Level Design –
defines how software functions
fulfill the design

 Detailed Design – develop
algorithms for each architectural
component

 Coding – transform algorithms into
software

 Unit testing – check that each

module acts as expected

 Integration and Testing – check that

modules interconnect correctly

 System and acceptance testing –
check the entire software system in
its environment

 Production, operation and

maintenance – provide for
enhancement and corrections

V-Shaped Strengths
 Emphasize planning for verification and validation of

the product in early stages of product development

 Each deliverable must be testable

 Project management can track progress by milestones

 Easy to use

V-Shaped Weaknesses
 Does not easily handle concurrent events

 Does not handle iterations or phases

 Does not easily handle dynamic changes in
requirements

When to use the V-Shaped Model
 Excellent choice for systems requiring high reliability –

hospital patient control applications

 All requirements are known up-front

 When design is stable

 Solution and technology are known

Prototyping Model

 Developers build a prototype during the requirements
phase

 Prototype is evaluated by end users

 Users give corrective feedback

 Developers further refine the prototype

 When the user is satisfied, the prototype code is
brought up to the standards needed for a final
product.

Prototyping Steps
 A preliminary project plan is developed
 An partial high-level paper model is created
 The model is source for a partial requirements specification
 A prototype is built with basic and critical functions
 The designer builds

 the database
 user interface
 algorithmic functions

 The designer demonstrates the prototype, the user
evaluates for problems and suggests improvements.

 This loop continues until the user is satisfied

Prototyping Strengths

 Customers can “see” the system requirements as
they are being gathered

 Developers learn from customers

 A more accurate end product

 Unexpected requirements accommodated

 Allows for flexible design and development

 Steady, visible signs of progress produced

 Interaction with the prototype stimulates
awareness of additional needed functionality

 Prototyping Weaknesses

 Tendency to abandon structured program
development for “code-and-fix” development

 Bad reputation for “quick-and-dirty” methods

 Overall maintainability may be overlooked

 Process may continue forever (scope creep)

When to use Prototyping

 Requirements are unstable or have to be clarified

 As the requirements clarification stage of a
waterfall model

 Develop user interfaces

 New, original development

Incremental SDLC Model
 Construct a partial

implementation of a total
system

 Then slowly add increased
functionality

 The incremental model
prioritizes requirements of the
system and then implements
them in groups.

 Each subsequent release of the
system adds functions to the
previous release, until all
designed functionality has been
implemented.

Incremental Model Strengths
 Develop high-risk or major functions first

 Each release delivers an operational product

 Customer can respond to each build

 Uses “divide and conquer” breakdown of tasks

 Lowers initial delivery cost

 Initial product delivery is faster

 Customers get important functionality early

Incremental Model Weaknesses
 Requires good planning and design

 Requires early definition of a complete and fully
functional system to allow for the definition of
increments

 Well-defined module interfaces are required (some
will be developed long before others)

 Total cost of the complete system is not lower

When to use the Incremental Model

 Most of the requirements are known up-front but
are expected to evolve over time

 A need to get basic functionality to the market
early

 On projects which have lengthy development
schedules

Spiral SDLC Model
 Adds risk analysis, and

4gl RAD prototyping to
the waterfall model

 Each cycle involves the
same sequence of steps
as the waterfall process
model

 Objectives: functionality, performance, hardware/software
interface, critical success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, man-power, experience etc.

Spiral Model Strengths
 Provides early indication of insurmountable risks,

without much cost

 Users see the system early because of rapid
prototyping tools

 Critical high-risk functions are developed first

 Users can be closely tied to all lifecycle steps

 Early and frequent feedback from users

Spiral Model Weaknesses

 Time spent for evaluating risks too large for small
or low-risk projects

 Time spent planning, resetting objectives, doing
risk analysis and prototyping may be excessive

 The model is complex

 Risk assessment expertise is required

 Spiral may continue indefinitely

 Developers must be reassigned during non-
development phase activities

When to use Spiral Model
 When creation of a prototype is appropriate
 When costs and risk evaluation is important
 For medium to high-risk projects
 Users are unsure of their needs
 Requirements are complex
 New product line
 Significant changes are expected

Quality Assurance Plan

 Defect tracing – keeps track of each defect found, its
source, when it was detected, when it was resolved, how it
was resolved, etc

 Unit testing – each individual module is tested

 Source code tracing – step through source code line by line

 Integration testing - test new code in combination with
code that already has been integrated

 System testing – execution of the software for the purpose
of finding defects.

