

 Waterfall Model

 V-Shaped Model

 Prototyping

 Incremental Model

 Spiral Model

Waterfall Model
 Requirements – defines needed

information, function, behavior,
performance and interfaces.

 Design – data structures,
software architecture, interface
representations, algorithmic
details.

 Implementation – source code,
database, user documentation,
testing.

Waterfall Model
 Test – check if all code modules

work together and if the system
as a whole behaves as per the
specifications.

 Installation – deployment of
system, user-training.

 Maintenance – bug fixes, added
functionality (an on-going
process).

Waterfall Strengths
 Easy to understand, easy to use

 Provides structure to inexperienced staff

 Milestones are well understood

 Sets requirements stability

 Good for management control (plan, staff, track)

Waterfall Deficiencies
 All requirements must be known upfront

 Deliverables created for each phase are considered
frozen – inhibits flexibility

 Does not reflect problem-solving nature of
software development – iterations of phases

 Integration is one big bang at the end

 Little opportunity for customer to preview the
system (until it may be too late)

When to use the Waterfall Model

 Requirements are very well known

 When it is possible to produce a stable design

 E.g. a new version of an existing product

 E.g. porting an existing product to a new platform.

V-Shaped SDLC Model
 A variant of the Waterfall

that emphasizes the
verification and validation
of the product.

 Testing of the product is
planned in parallel with a
corresponding phase of
development

V-Shaped Steps
 Project and Requirements Planning

– allocate resources

 Product Requirements and
Specification Analysis – complete
specification of the software system

 Architecture or High-Level Design –
defines how software functions
fulfill the design

 Detailed Design – develop
algorithms for each architectural
component

 Coding – transform algorithms into
software

 Unit testing – check that each

module acts as expected

 Integration and Testing – check that

modules interconnect correctly

 System and acceptance testing –
check the entire software system in
its environment

 Production, operation and

maintenance – provide for
enhancement and corrections

V-Shaped Strengths
 Emphasize planning for verification and validation of

the product in early stages of product development

 Each deliverable must be testable

 Project management can track progress by milestones

 Easy to use

V-Shaped Weaknesses
 Does not easily handle concurrent events

 Does not handle iterations or phases

 Does not easily handle dynamic changes in
requirements

When to use the V-Shaped Model
 Excellent choice for systems requiring high reliability –

hospital patient control applications

 All requirements are known up-front

 When design is stable

 Solution and technology are known

Prototyping Model

 Developers build a prototype during the requirements
phase

 Prototype is evaluated by end users

 Users give corrective feedback

 Developers further refine the prototype

 When the user is satisfied, the prototype code is
brought up to the standards needed for a final
product.

Prototyping Steps
 A preliminary project plan is developed
 An partial high-level paper model is created
 The model is source for a partial requirements specification
 A prototype is built with basic and critical functions
 The designer builds

 the database
 user interface
 algorithmic functions

 The designer demonstrates the prototype, the user
evaluates for problems and suggests improvements.

 This loop continues until the user is satisfied

Prototyping Strengths

 Customers can “see” the system requirements as
they are being gathered

 Developers learn from customers

 A more accurate end product

 Unexpected requirements accommodated

 Allows for flexible design and development

 Steady, visible signs of progress produced

 Interaction with the prototype stimulates
awareness of additional needed functionality

 Prototyping Weaknesses

 Tendency to abandon structured program
development for “code-and-fix” development

 Bad reputation for “quick-and-dirty” methods

 Overall maintainability may be overlooked

 Process may continue forever (scope creep)

When to use Prototyping

 Requirements are unstable or have to be clarified

 As the requirements clarification stage of a
waterfall model

 Develop user interfaces

 New, original development

Incremental SDLC Model
 Construct a partial

implementation of a total
system

 Then slowly add increased
functionality

 The incremental model
prioritizes requirements of the
system and then implements
them in groups.

 Each subsequent release of the
system adds functions to the
previous release, until all
designed functionality has been
implemented.

Incremental Model Strengths
 Develop high-risk or major functions first

 Each release delivers an operational product

 Customer can respond to each build

 Uses “divide and conquer” breakdown of tasks

 Lowers initial delivery cost

 Initial product delivery is faster

 Customers get important functionality early

Incremental Model Weaknesses
 Requires good planning and design

 Requires early definition of a complete and fully
functional system to allow for the definition of
increments

 Well-defined module interfaces are required (some
will be developed long before others)

 Total cost of the complete system is not lower

When to use the Incremental Model

 Most of the requirements are known up-front but
are expected to evolve over time

 A need to get basic functionality to the market
early

 On projects which have lengthy development
schedules

Spiral SDLC Model
 Adds risk analysis, and

4gl RAD prototyping to
the waterfall model

 Each cycle involves the
same sequence of steps
as the waterfall process
model

 Objectives: functionality, performance, hardware/software
interface, critical success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, man-power, experience etc.

Spiral Model Strengths
 Provides early indication of insurmountable risks,

without much cost

 Users see the system early because of rapid
prototyping tools

 Critical high-risk functions are developed first

 Users can be closely tied to all lifecycle steps

 Early and frequent feedback from users

Spiral Model Weaknesses

 Time spent for evaluating risks too large for small
or low-risk projects

 Time spent planning, resetting objectives, doing
risk analysis and prototyping may be excessive

 The model is complex

 Risk assessment expertise is required

 Spiral may continue indefinitely

 Developers must be reassigned during non-
development phase activities

When to use Spiral Model
 When creation of a prototype is appropriate
 When costs and risk evaluation is important
 For medium to high-risk projects
 Users are unsure of their needs
 Requirements are complex
 New product line
 Significant changes are expected

Quality Assurance Plan

 Defect tracing – keeps track of each defect found, its
source, when it was detected, when it was resolved, how it
was resolved, etc

 Unit testing – each individual module is tested

 Source code tracing – step through source code line by line

 Integration testing - test new code in combination with
code that already has been integrated

 System testing – execution of the software for the purpose
of finding defects.

