=

Software Development
Life Cycle (SDLC)

Waterfall Model
V-Shaped Model
Prototyping

Incremental Model
Spiral Model

,//—\A SRS
Waterfall Mode

Requirements

Implementation

Installation

Maintenance

Requirements — defines needed
information, function, behavior,
performance and interfaces.

Design - data structures,
software architecture, interface
representations, algorithmic
details.

Implementation - source code,
database, user documentation,
testing.

//
/\M i

=

Naterfall Mode

Test - check if all code modules
work together and if the system
as a whole behaves as per the
specifications.

Requirements

Implementation

Installation - deployment of
system, user-training.

Installation

Maintenance — bug fixes, added
functionality (an on-going
process).

Maintenance

Waterfall Strengths

Easy to understand, easy to use

Provides structure to inexperienced staff
Milestones are well understood

Sets requirements stability

Good for management control (plan, staff, track)

Waterfall Deficiencies

All requirements must be known upfront

Deliverables created for each phase are considered
frozen — inhibits flexibility

Does not reflect problem-solving nature of
software development - iterations of phases

Integration is one big bang at the end

Little opportunity for customer to preview the
system (until it may be too late)

When to use the Waterfall Model

Requirements are very well known

When it is possible to produce a stable design

E.g. a new version of an existing product

E.g. porting an existing product to a new platform.

/XM

—

V-Shaped SDLC Model

Project &

Planning

Production,
Requirements < _—_— = Operation &
Maintenance

Product - System &
Requirements & |

Specification
Analysis

Architecture = —~ Integration &
High-Level Design [Testing

ol Acceptance
Testing

Detailed Design ==y Unit Testing

A variant of the Waterfall
that emphasizes the
verification and validation
of the product.

Testing of the product is
planned in parallel with a
corresponding phase of
development

V-Shaped Steps

Project and Requirements Planning
— allocate resources

Product Requirements and
Specification Analysis — complete
specification of the software system

Architecture or High-Level Design -
defines how software functions

fulfill the design

Detailed Design - develop
algorithms for each architectural
component

Coding - transform algorithms into
software

Unit testing — check that each
module acts as expected

Integration and Testing — check that
modules interconnect correctly

System and acceptance testing -
check the entire software system in
its environment

Production, operation and
maintenance — provide for
enhancement and corrections

V-Shaped Strengths

Emphasize planning for verification and validation of
the product in early stages of product development

Each deliverable must be testable
Project management can track progress by milestones
Easy to use

V-Shaped Weaknesses

Does not easily handle concurrent events
Does not handle iterations or phases

Does not easily handle dynamic changes in
requirements

When to use the V-Shaped Model

Excellent choice for systems requiring high reliability -
hospital patient control applications

All requirements are known up-front
When design is stable
Solution and technology are known

Prototyping Model

Developers build a prototype during the requirements
phase

Prototype is evaluated by end users
Users give corrective feedback
Developers further refine the prototype

When the user is satisfied, the prototype code is
brought up to the standards needed for a final
product.

//—\Xk,,, — it

.»/

Prototyping Steps

A preliminary project plan is developed
An partial high-level paper model is created
The model is source for a partial requirements specification

A prototype is built with basic and critical functions

The designer builds
* the database
 user interface
e algorithmic functions

The designer demonstrates the prototype, the user
evaluates for problems and suggests improvements.

This loop continues until the user is satisfied

Prototyping Strengths

Customers can “see” the system requirements as
they are being gathered

Developers learn from customers

A more accurate end product

Unexpected requirements accommodated
Allows for flexible design and development
Steady, visible signs of progress produced

Interaction with the prototype stimulates
awareness of additional needed functionality

Prototyping Weaknesses
Tendency to abandon structured program
development for “code-and-fix” development
Bad reputation for “quick-and-dirty” methods
Overall maintainability may be overlooked

Process may continue forever (scope creep)

When to use Prototyping

Requirements are unstable or have to be clarified

As the requirements clarification stage of a
waterfall model

Develop user interfaces
New, original development

/—\ B
Incremental SDLC Model

Validation
System
Feasibility Software Plans L ELT)]

and ._
Requirements Product Verification
Design

Verification
Unit Test
rlntegratic-n Product Verification
Implementation [ELE LR
Operations & RUEE GO
Maintenance

/

/V

Construct a partial
implementation of a total
system

Then slowly add increased
functionality

The incremental model
prioritizes requirements of the
system and then implements
them in groups.

Each subsequent release of the
system adds functions to the
previous release, until all
designed functionality has been
implemented.

e

=

Incremental Model Strengths

Develop high-risk or major functions first
Each release delivers an operational product
Customer can respond to each build

Uses “divide and conquer” breakdown of tasks
Lowers initial delivery cost

Initial product delivery is faster

Customers get important functionality early

La*

//

=

Incremental Model Weaknesses

Requires good planning and design

Requires early definition of a complete and fully
functional system to allow for the definition of
increments

Well-defined module interfaces are required (some
will be developed long before others)

Total cost of the complete system is not lower

/

=

When to use the Incremental Model

Most of the requirements are known up-front but
are expected to evolve over time

A need to get basic functionality to the market
early

On projects which have lengthy development
schedules

//

—

—
.»/

piral SDLC Model

| Adds risk analysis, and
objociues, e 10] RAD prototyping to

altematives, Identify,

constraints resolve risks the Waterfall mOdel

Each cycle involves the
same sequence of steps
as the waterfall process
Develop model

next level
product

Implemient

Objectives: functionality, performance, hardware/software
interface, critical success factors, etc.

Alternatives: build, reuse, buy, sub-contract, etc.
Constraints: cost, schedule, man-power, experience etc.

Spiral Model Strengths

Provides early indication of insurmountable risks,
without much cost

Users see the system early because of rapid
prototyping tools

Critical high-risk functions are developed first
Users can be closely tied to all lifecycle steps
Early and frequent feedback from users

Spiral Model Weaknesses

Time spent for evaluating risks too large for small
or low-risk projects

Time spent planning, resetting objectives, doing
risk analysis and prototyping may be excessive

The model is complex
Risk assessment expertise is required
Spiral may continue indefinitely

Developers must be reassigned during non-
development phase activities

When to use Spiral Model

When creation of a prototype is appropriate
When costs and risk evaluation is important
For medium to high-risk projects

Users are unsure of their needs
Requirements are complex

New product line

Significant changes are expected

Quality Assurance Plan

Defect tracing - keeps track of each defect found, its
source, when it was detected, when it was resolved, how it
was resolved, etc

Unit testing — each individual module is tested
Source code tracing — step through source code line by line

[ntegration testing - test new code in combination with
code that already has been integrated

System testing — execution of the software for the purpose
of finding defects.

