Pointers
and
dynamic objects

Topics

* Pointers
— Memory addresses
— Declaration
— Dereferencing a pointer
— Pointers to pointer

 Static vs. dynamic objects

—newand delete

Computer Memory

e Each variable is assigned a memory slot (the
size depends on the data type) and the
variable’s data is stored there

Memory address: 1020 1024 1032

Variable a’s value, i.e., 100, is
int a = 100; stored at memory location 1024

Pointers

* A pointer is a variable used to store the
address of a memory cell.

* We can use the pointer to reference this
memory cell

Memory address: 1020 1024 1032

integer

pointer

Pointer Types

* Pointer

— C++ has pointer types for each type of object
* Pointers to int objects
* Pointers to char objects

* Pointers to user-defined objects
(e.g., RationalNumber)

— Even pointers to pointers
* Pointers to pointers to int objects

Pointer Variable

* Declaration of Pointer variables
type* polnter name;
//or
type *polnter name;
where type is the type of data pointed to (e.g. int, char, double)

Examples:
int *n;
RationalNumber *r;
int **p; // pointer to pointer

Address Operator &

« The"address of" operator (&) gives the memory

address of the variable
variable_pame

Memory address: 1020 1024

int a = 100;

//get the wvalue,

cout << a; //prints 100
//get the memory address
cout << &a; //prints 1024

Address Operator &

Memory address: 1020 1024 1032

a b
#include <iostream>

using namespace std;

e Resultis:
void main () { The address of a is: 1020
int a, b; The address of b is: 1024
a = 88;
b = 100;
cout << "The address of a is: " <K<K &a << endl;

cout << "The address of b is: " <K< &b << endl;

Pointer Variables

Memory address: 1020 1024 1032

a
int a = 100;
int *p = &aj;
cout << a << " " K &a <<Lendl;
cout << p << " " K< &p <<endl;

* The value of pointer p is the address of variable a

* A pointeris also a variable, so it has its own memory
address

Pointer to Pointer

// Local Declarations

int a;
int %6 ;
int **q;

pointer to
pointer to integer

integer
variable

// Statements

What is the output? a=58;

p=&a;
q=&p;
cout << a << " ";

58 58 58 cout << Tyl

"moian,
cout << ="

Dereferencing Operator *

* We can access to the value stored in the variable pointed
to by using the dereferencing operator (*),

Memory address: 1020 1024 1032

int a = 100; a P

int *p = &a; e Resultis:
cout << a << endl; 100

cout << &a << endl; 1024

cout << p << " " << *p << endl; 1024 100

cout << &p << endl; 1032

Don’t get confused

* Declaring a pointer means only that it is a pointer: int
*p;
 Don’t be confused with the dereferencing operator, which
is also written with an asterisk (*). They are simply two
different tasks represented with the same sign
int a = 100, b = 88, ¢ = 8;
int *pl = &a, *p2, *p3 = &c;

p2 = &b; // p2 points to b

p2 = pl; // P2 points to a

b = *p3; //assign c to b e Resultis:
*p2 = *p3; //assign c to a 888

cout << a << b < ¢c;

A Pointer Example

Memory Layout

The code .
Box diagram
void doubleTIt (int x, main
int * p)
p
{ 8192
o= 2 % xs a | 16 (8200)
) doublelt
int main (int argc, const % 9
char * argv[]) (81906)
{
. a .
int a = 16; 16 malin
’ doublelIt
doubleIt (9, &a); (8192)
return 0;
} x| 9

a gets 18 o

Another Pointer Example

#include <iostream> e Let’s figure out:
using namespace std; value1==? [value2=="
int main () { Also, p1=? p2="?

int valuel = 5, value?2 = 15;

int *pl, *p2;
pl = &valuel; // pl = address of valuel
p2 = &value2; // p2 = address of valuel

*pl = 10; // value pointed to by pl=10

*p2 = *pl; // value pointed to by p2= value
// pointed to by pl

pl = p2; // pl = p2 (pointer value copied)

*pl = 20; // value pointed to by pl = 20

cout << "valuel==" << valuel << "/ wvalue2==" <<

value?Z;

return 0;

Another Pointer Example

int a = 3;

char s = ‘z’;
double d = 1.03;
int *pa = &aj;
char *ps = &s;

double *pd = &d;
% sizeof returns the # of bytes..
cout << sizeof (pa) << sizeof (*pa)
<< si1izeof (&pa) << endl;
cout << sizeof(ps) << sizeof (*ps)
<< si1zeof (&ps) << endl;
cout << sizeof(pd) << sizeof (*pd)
<< sizeof (&pd) << endl;

Reference Variables

A reference is an additional name to
an existing memory location

Pointer: Reference:
X 9 X 9
) ref
ref
intx =9;
int x=9; : L.
int *ref: int &ref = x;

ref = &x;

Reference Variables

A reference variable serves as an alternative name for an
object

int m = 10;

int & = m; // 7 is a reference variable

cout << Y“walue of m = Y << m << endl;
//print 10

7 = 18;

cout << “Ywalue of m = % << m << endl;
// print 18

Reference Variables

* Areference variable always refers to the same
object. Assigning a reference variable with a

new value actually changes the value of the
referred object.

e Reference variables are commonly used for
parameter passing to a function

Traditional Pointer Usage

vold IndirectSwap (char *Ptrl, char *Ptr2) {
char temp = *Ptrl;
*Ptrl = *Ptr2;
*Ptr2 = temp;

J

int main () {
char a = 'y';
char b = 'n';

IndirectSwap (&a, &b);
cout << a << b << endl;
return 0;

Pass by Reference

vold IndirectSwap (charé& vy, charé& z) |
char temp = y;
y = zj
z = Ltemp;

J

int main () {
char a = 'y';
char b = 'n';
IndirectSwap(a, Db);
cout << a << b << endl;
return 0;

Pointers and Arrays

>< The name of an array points only to the first
element not the whole array.

al 0] <+——2a

a[1]

al 2] .
R The name of an array Is a

al 3 pointer constant to its first

Al element

#include <iostream>
using namespace std;

volid main () {
int al[5];
cout << "Address of a[0]: " << &a[0] << endl
<< "Name as pointer: " << a << endl;
}
Result:

Address of a[0]: 0xO0065FDE4
Name as pointer: 0x0065FDEA4

This element is
called a[0] or

*a

>4 To access an array, any pointer to the first element
can be used instead of the name of the array.

We could replace *p by *a

r ~

——

EFEE D
A

@AV

>< Both a and p are pointers to the same array.

> Given a pointer p, p+n refers to the element that
Is offset from p by n positions.

* (a+n) is identical to a[n]

e Note: flexible pointer syntax

NULL pointer

* NULL is a special value that indicates an empty pointer
e If you try to access a NULL pointer, you will get an error
int *p;
p = 0;
cout << p << endl; //prints O

cout << &p << endl;//prints address of p
cout << *p << endl;//Error!

Storing 2D Array in 1D Array

int twod[3][4] = {{0,1,2,3}, {4,5,6,7},
{8,9,10,11}};

int oned[12];
for (int 1i=0; 1<3; 1i++) {
for (int j=0; j<4 ; Jj++)
oned[i*4+j] = twod[i] []j]:;

table table[i] =

y NN EEE NN B Rttt
refers to

table + 1 table[0] or *(table + 0) the address
row
table + 2 table[1] or *(table + 1))

MW
table[2] or *(table + 2)
int table[3][4] = {{1,2,3,4}, * (table[i]+])

What is {5,6,7,8},{9,10,11,12}}; = table[i][]]
**table
? for (int 1=0; i<3; i++) {

for (int j=0; j<4; j++)
cout << * (* (table+i)+j);
cout << endl;

Dynamic
Objects

Memory Management

e Static Memory Allocation

— Memory is allocated at compilation time

* Dynamic Memory

— Memory is allocated at running time

Static vs. Dynamic Objects

* Static object * Dynamic object

(variables as declared in function calls)

— Memory is acquired by
program with an allocation
request

* new operation

— Memory is acquired
automatically

- Memory'is returned ' — Dynamic objects can exist
automatically when object beyond the function in which
goes out of scope they were allocated

— Object memory is returned by
a deallocation request

* delete operation

Memory Allocation

Static Dynamic
Using declarations Using new
and definitions predefined functions | delete
{ int* ptr;
int af200]; ptr = new int[200];

} delete [] ptr;

Object (variable) creation: New

Syntax

ptr = new SomeType;

where ptris a pointer of type SomeType

Example
int* p = new 1int;

Object (variable) destruction:
Delete

Syntax
delete p;

storage pointed to by p is returned to free store and p is now undefined

Example

int* p = new 1int;
*p = 10;
delete p;
—l /
p L0

Array of New:
dynamic arrays

* Syntax
P = new
SsomeType [Expression];

— Where

* Pisa pointer of type SomeType

e Expression isthe number of objects to be
constructed -- we are making an array

e Because of the flexible pointer syntax, P can
he conc<idered to be an arrav

Dynamic Memory Allocation
m Request for "unnamed” memory from the Operating System

®m int *p, n=10; .

p = new 1nt;

p = new 1nt[100];

new
- I
new
B e
new

Want an array of unknown size
#include <iostream>

using namespace std;

vold main ()

{

int n;

cout << “How many students? %;
cin >> n;

int *grades = new 1nt[n]

for(int 1=0; 1 < n; 1++){
int mark;
cout << “Input Grade for Student” << (1+1) << ™ 2?2 :7;
cin >> mark;
grades[1] = mark;

printMean (grades, n); // call a function with dynamic array

BEFORE AFTER
ptr bt
delete ptr;
BEFORE AFTER
ptr 200 integers plr b .-200integers_ __________________

delete[| ptr;

A Simple Dynamic List Example

cout << "Enter list size: ";
int n;
cin >> n;
int *A = new int[n];
if (n<=0) {
cout << "bad size" << endl;
return 0;
}
initialize (A, n, 0); // initialize the array A with value 0
print (A, n);
A = addElement (A,n,5); //add an element of value 5 at the end of A
print (A, n);

A = deleteFirst(A,n); // delete the first element from A
print (A, n);
selectionSort (A, n); // sort the array (not shown)

print (A, n);
delete [] A;

Initialize

vold i1nitialize(int 1list[], int size, 1int wvalue) {
for(int i1i=0; i<size; 1i++)

list[i] = wvalue;

print ()

volid print(int 1list[], int size) {
cout << "[",
for (int i=0; i<size; i++)
cout << list[i] <<« " ";
cout << "]" << endl;

J

e Remember in C++, array parameters are always passed
by reference. That is, void print(int list[], int size) {...} is the same as

Note: no & used here, so, the pointer itself is passed by value

Adding Elements

// for adding a new element to end of array

int* addElement (int list[], 1nté& size, int wvalue) {

int* newlList = new int [size+1l]; // make new array
i1f (newList==0) {
cout << "Memory allocation error for addElement!" << endl;

exit (-1);
}
for(int 1=0; 1i<size; 1++)
newlList[1] = list([i];
if (size) delete [] 1list;
newlList[size] = value;
size++;

return newlList;

Delete the first element

// for deleting the first element of the array
int* deleteFirst(int 1list[], 1inté& size) {
if(size <= 1) {
1if(size) delete 1list;
size = 0;
return NULL;
}

int* newList = new int [size-1]; // make new array
1f (newList==0) {
cout << "Memory allocation error for deleteFirst!" << endl;

exit (-1);
}

for(int i=0; i<size-1; i++) // copy and delete old array
newlList[i1i] = list[i+1];

delete [] 1list;

size—-;

return newlList;

Adding Element (version 2)

// for adding a new element to end of array

// here “1list” is a reference to a pointer variable: if the value of
the pointer is changed in function, the change is global.
vold addElement(int * & list, int & size, const int value) {

int * newlList = new int [size + 1];

if(newList == NULL) {
cout << "Memory allocation error for addElement!" << endl;
exit (=1);

}

for(int i = 0; i < size; i++)
newlList[1] = list[1 1;

if(size) delete [] list;

newlList[size] = value;

size++;

list = newlList;

return;

Deleting Element (version 2)

volid deleteFirst(int * & 1list, int & size) {

1f(size <=1){
if(size)

delete list;
list = NULL;
size = 0;
return;

}

delete list; // delete the first element
list++;

size—--;

return;

Another Main program

int main () {

int * A = NULL;
int size = 0;

int 1i;

for(i = 0; i < 10;

addElement (A,

for(i = 0; i < 10;

cout << A[i]
cout << endl;

<< w

A, size

for(i = 0; i < 4;
deleteFirst (
for(i = 0; 1 < 6;

cout << A[i]
cout << endl;

return O;

<< "

itt)

size,

i+

LA
14

i++

i++

LA
4

0123456789
456789

Dangling Pointer Problem

int *A = new 1nt[5];

for (int 1i=0; 1i<5; i++)
Ali] = iy

int *B = A;

S
(o[[2]3]4]
N

delete L] A; Locations do not belong to program
B[0] = 1; // illegal! ¢

A
B
L

Memory Leak Problem

int *A = new int [5];
for (int 1i=0; 1i<5; i++)
Al1i] = 1;

Ly [Lelal2ls]al]

These locations cannot be

A = new int [5]; accessed by program

v
L el l2fs 4]
I I I = =

>1 A dynamic array is table.

an array of pointers blel0 3211812124
to save space when ablelV]
not all rows of the table[1] 13/11'16/12/42/19/14
array are full. P
y table:2: %)
table[3]
> int **table; table[4] 131314
table[3]
1118
table = new int*[6]; YEA
table[0] = new int[4]
table[l] = new int|[7];
table[2] = new int[1l];
table[3] = new int[3]
table[4] = new int[2]
table[5] = NULL;

Memory Allocation

int **table;

table = new int*[6];

table[0]= new int[3];
table[l]= new int[1l];
table[2]= new int[5];
table[3]= new int[10];
table[4]= new 1int[2];
table[5]= new 1int[6];

table[0] [0] = 1; table[O0][1l] = 2; tablel[0][2] = 3;
table[1] [0] = 4;

table[2] [0] = 5; table[2][1] = 6; tablel[2][2] = 7; tablel[2] [3]
= 8, tablel2][4] = 9;

table[4]1[0] = 10; table[4][1] = 11;
cout << table[2][5] << endl;

Memory Deallocation

* Memory leak is a serious bug!
* Each row must be deleted individually

e Be careful to delete each row before deleting
the table pointer.
— for (int 1=0; 1<6; 1++)
delete [] table[1];
delete [| table;

Create a matrix of any dimensions, m by n:

int m, n;

cin >> m >> n >> endl;

int** mat;

mat = new 1nt*[m];

for (int 1=0;1i<m;1++)

mat[i1] = new 1nt[n];

Put it into a function:

int m, n;
cin >> m >> n >> endl;
int** mat;

mat = imatrix(m,n);

int** imatrix (nr, nc) {
int** m;
m = new int*[nr];
for (int 1=0;i<nr;i++)
m[i] = new int[nc];

return m;

