

� The 8259A is a programmable interrupt
controller designed to work with Intel
8080A,8085A,8086 And 8088
microprocessors.

� It works as an overall manager in an
interrupt driven system environment.

� It is used when several I/O devices
transfer data using interrupt and they are
to be connected to the same interrupt
level of the microprocessor.

� It can handle 8 external interrupts . This is
equivalent to providing eight interrupt pins
on the processor in place of one INTR/INT
pin.

� The starting address of the interrupts service
routine can be vectored to any location in
the memory map. This eliminates the major
drawback of 8085 interrupt in which all the
interrupts are vectored to memory location
on page 00h.

� Resolve eight levels of interrupt priorities in a
variety of modes.

� Mask each request individually.
� Read the status of pending interrupts in

service interrupts and masked interrupts.
� Be set up to accept either the level

triggered or edge triggered interrupt
request.

� The 8259 can be cascaded in a master
slave configuration to handle 64 interrupt
inputs.

� The 8259 is a programmable interrupt controller which uses
NMOS technology.

� It is available in 28 pin plastic dial in line package (DIP).
� It requires one power supply of 5+ V but does not require

any internal or external clock.
� A single PIC can accept interrupt requests from eight I/O

devices, resolve priority among them and communicate
to the microprocessor.

� Interrupt requests from all the I/O devices can individually
be masked and a suitable priority mode can be selected
by programming.

� Built in expandability has also been provided to cascade 9
such Programmable Interrupt Controller devices (8259s) to
serve up to 64 I/O devices

� The 8259A contains four sections:

� 1. Data bus buffer.

� 2. Read/write control logic section.

� 3. Cascade buffer/comparator section.

� 4. Interrupt and control logic section.

� 1. Data bus buffer : This is a tri-state bidirectional 8-bit
data bus buffer used to interface the 8259A to data
bus of 8085. The control words and status information
are transferred through this data buffer.

� 2. Read/Write control logic section : The function of
this read/write control logic section is to accept the
commands from the MPU.

� It contains the initialization command word (ICW)
registers and the operation command word (OCW)
registers which store the various control formats for
device operation.

� This section also accepts Read commands from the
MPU to read status words.

� The four pins are connected to a block which are:

� CS (chip select) : This pin is active low chip select terminal.
When it goes low the 8259A is selected for interrupts
service.

� RD : This is an active low signal and of the interrupt request
register (IRR), In service register , the interrupt mark
register(IMR) or the interrupt level on the data bus.

� WR : This is an active low signal and it enable the write
operation.. A low on this interrupt enables the MPU to
write initialization control word (ICW) and operation
command word (OCW) to the 8259A

� A0 : This is the input signal used in conjunction with the
signals WR and RD to write the commands into the various
status registers of the device. This terminal is directly
connected to A0 address lines. When the address line A0 is
at logic 0. the controller is selected to write a command or
read a status.

� 3. Cascade buffer/comparator section : This
block is used to expand the number of
interrupt levels up to 64 levels by cascading
two or more 8295A. In such cases one
8259A acts as the master and the others
acts as slaves. The necessary control signals
for cascade operations are generated with
this block. A high on the slave program pin
selects 8259A master and a low to this pin
selects 8259A slave. For a master, the pin
CAS0-CAS2 are outputs, and for slave
CAS0-CAS2 are input pins.

� 4. Interrupt and control logic section

� > Interrupt request register (IRR)

� > In-Service register (ISR)

� > Priority Resolver

� > Interrupt Mask Register (IMR)

� > Control Logic Section

� The IRR is used to store all the interrupt
levels which are requesting services. It
has 8 interrupt lines IR0 to IR7. when any
of these lines become high, the
corresponding mask bit is checked and
if it is enabled, then the corresponding
bit in the interrupt request register is set.

� The ISR is used to store information of all
the interrupt levels which are currently
being serviced.

� The IMR stores the bits of the interrupt lines
to be masked.

� The IMR operates on the ISR.

� This registered can be programmed by an
operation command word (OCW) to store
the bit of the interrupt lines to be masked .

� An interrupt which is masked by software
will not be recognized and serviced even if
it sets the corresponding bits in the IRR

� It determines the priorities of the bits set
in the IRR.

� The bit corresponding to the highest
priority interrupt is set in the ISR during the
INTA input is consider for service, but it
will reject a lower priority interrupt.

� The priority resolver does the job of
judging whether to allow another
interrupt to be executed in the middle of
executing one interrupt service routine.

� After the interrupt request priorities are
resolved by the priority resolver , control
logic sends an interrupt signal through its
INT signal to the MPU.

� This terminal INT is connected to the INTR
terminal of the microprocessor.

� The microprocessor responds to this
request by sending the interrupt
acknowledge signal INTA to the input
terminal INTA of the 8259A.

� To implement interrupts, the Interrupt
Enable Flip Flop in the Microprocessor is
enabled by writing the EI instruction, and
the 8259A is initialized by writing control
words in the control register. After the
8259A is initialized , the following
sequence of event occurs when one or
more interrupt request lines go high:

� 1. The IRR stores the request.
� 2. The priority resolver checks the IRR for

interrupt requests, the IMR for making bits, and
the ISR for interrupt request being served. It
resolves the priority and sets the INT high when
appropriate.

� 3. The MUP acknowledged the interrupt by
sending INTA.

� 4. After the INTA is received , the appropriate
priority bit in the ISR is set to indicate which
interrupt level is being served and then the
opcode for the CALL institution is placed on
the data bus.

� 5. When the MPU decodes the CALL
instruction ,it places two more INTA signals
on the data bus.

� 6. When the 8259A received the second
INTA it place the low order byte of the CALL
address on the data bus. The address is the
vector memory location for the interrupt.

� 7. During the third INTA pulse, the ISR bit is
reset automatically .

� 8. The program sequence is transferred to
the memory location specified by the CALL
indtruction.

� Many types of priority modes are
available under software control in the
8259A and they can be changed
dynamically during the program by
writing appropriate command words.

� The FNM is the general purpose mode in
which all interrupt requests are arranged
from the highest to lowest priority level.

� This is the default mode setting after
initialization.

� The 8259 continues to operate in FNM
until the mode is changed by OCWs.

� In this mode a device after being
serviced receives the lowest priority.

� 3. Specific Rotation Mode

This mode is similar to the automatic
rotation mode, except that the user can
select any IR for the lowest priority , thus
fixing all other priorities.

� After the completion of an interrupt service,
the corresponding ISR bit needs to be reset to
update the information in the ISR. This is called
the End-of-Interrupt (EOI) command.

� 1. Non specific EOI command: When this
command is sent to 8259A, it resets the highest
priority ISR bit.

� 2. Specific EOI command: This command
specifies which ISR bit to reset.

� 3.Automatic EOI: In this mode no command is
necessary. The major drawback of this mode is
that, the ISR does not have information on
which IR is being serviced.

