II Semester B.C.A. Examination, May 2017 (CBCS) (2014-15 and Onwards) (F + R) COMPUTER SCIENCE

BCA 205: Numerical and Statistical Methods

Time: 3 Hours Max. Marks: 100

Instruction: Answerall Sections.

SECTION - A

I. Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1) Subtract 0.9432 E 4 from 0.5452E 3.
- 2) Define Round off error.
- 3) Write the formula for Newton-Raphson method.
 - 4) Write the 'Lagrange's interpolation formula'.
 - 5) Construct the difference table for the following data.

x	0	1	2	3	4	5	6	7
f(x)	1	2	4	7	11	16	22	29

- 6) Write the Simpson's $(\frac{3}{8})^{th}$ rule formula.
- 7) Define power method.
- 8) Write the formula to calculate the standard deviation by actual mean method.
- 9) Find the median of the following data.

1 22 17 -11 -0			or contract the same	terrane and territory	AND THE RESERVE
X	10	15	9	25	19

- 10) Write the alternative formula to calculate Karl Pearson's coefficient of correlation.
- 11) Find the coefficient of variation given that mean is 1.2 and S.D. is 1.378.
- 12) If $P(B) = \frac{1}{5}$ and $P(A \cap B) = \frac{1}{4}$ then find P(A|B).

SECTION - B

II. Answer any six of the following:

 $(6 \times 5 = 30)$

- 13) Find a real root of the equation $x^3 2x 5 = 0$ lies in the interval (2, 3) using bisection method in five stages.
- 14) Use Newton-Backward interpolation formula find f(84) from the following data.

X	40	50	60	70	80	90
f(x)	184	204	226	250	276	304

15) Estimate f(6) using Lagrange's interpolation formula from the following data.

x	3	7	9	10
f(x)	168	120	72	63

- 16) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$, using Trapezoidal rule. Divide (0, 6) into six parts.
- 17) Evaluate $\int_{0}^{1} e^{x} dx$, using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule. Divide (0, 1) into five equal parts.
- 18) Solve by Gauss-Seidal method

$$10x + 2y + z = 9$$
, $x + 10y - z = -22$, $-2x + 3y + 10z = 22$.

19) Solve using Crout's LU decomposition method.

$$2x_1 + 3x_2 + x_3 = -1$$

$$5x_1 + x_2 + x_3 = 9$$

$$3x_1 + 2x_2 + 4x_3 = 11$$

20) Determine the machine representation of the decimal number 492.234375 in both single precision and double precision.

SECTION-C

III. Answer any six of the following:

(6×5=30)

21) Solve by Gauss-Jacobi's method

$$10x + 2y + z = 9$$
, $x + 10y - z = -22$, $-2x + 3y + 10z = 22$ (only five approximations).

22) Use power method to find the largest eigen value and corresponding eigen

vector of the matrix
$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

- 23) Solve by Gauss elimination method x + y + z = 3, 2x + 3y + 3z = 10, 3x y + 2z = 13.
- 24) Solve by Taylor's series method the value of x = 0.2 correct to four decimal places. If y(x) satisfies $\frac{dy}{dx} = x y^2$ and y(0) = 1 (upto third degree).
- 25) Use Picard's method, solve $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 upto the second approximation. Hence find the value of y(1).
- 26) Using Runge-Kutta method of IV-order, solve $\frac{dy}{dx} = x + y^2$; y(0) = 1 for x = 0.2.
- 27) Find geometric mean from the following data.

	Total galax							
C.I.	20-30	30-40	40-50	50-60	60-70			
f	5	13	7	11	4			

28) If A and B are two events such that $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{9}$ and $P(A \cup B) = \frac{1}{27}$ find P(A|B), P(not A) and P(not A) and P(not B).

SECTION - D

IV. Answer any four of the following:

 $(4 \times 5 = 20)$

29) Find median for the following data.

-								
	C.I.	0-10	10-20	20-30	30-40	40-50	50-60	60-70
	f	7	18	34	50	35	20	6

30) Find the coefficient of correlation for the following data.

X	10	14	18	22	26	30
			24		30	

31) Calculate the rank correlation from the following data:

X	42	68	92	48	81	52	39	78	22	11
у	32	52	82	62	72	94	22	92	12	14

- 32) Two cards are drawn from a well-shuffled deck of 52 cards. Find the probability that they are both aces if the first card is (a) replaced (b) not replaced.
- 33) State and prove Bayes theorem.
- 34) Obtain the function of the normal probability curve that may be fitted to the following data.

X,	5	6	7	8	9	10	11
f,	2	5	8	12	7	4	3